If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+14x+6=0
a = -2; b = 14; c = +6;
Δ = b2-4ac
Δ = 142-4·(-2)·6
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{61}}{2*-2}=\frac{-14-2\sqrt{61}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{61}}{2*-2}=\frac{-14+2\sqrt{61}}{-4} $
| 4a+21+12a=37-21 | | 0=-4-5n+6n^2 | | x^2-17x=-17x | | 6x+6=-34x-2x | | 4a-4+4=11+4a | | 1/6^x=36 | | 5x+11=-9x-17 | | n²+7n+6=0 | | 12x+9=12x+31 | | 4a-4+4=11+4 | | 9+(2x-2)=9 | | x^+4x+8=5x+18 | | 5x-(3+x)=2x-1 | | 5b1+5=40 | | 2/3(12-9)+10=x+(-6)+10 | | 12a+4a+21=37 | | 9x-x-5x=6x5 | | 8+(x+2)=3x+4 | | x+19=7x+7 | | –9p=44+2p | | 35-3y=35-2y | | 8w=5=4(2w=1) | | -4k+60=3k-3 | | -5j-35=-10 | | (-2x+15-1)^2=0 | | 18-x=6+2x | | -1/5y-(+5)=27 | | 3x+15=3x=25 | | 24+3/4=u | | a+4a-4=11 | | 3/4+u=24 | | 4+7(1+9z)=-35 |